Engineering Bulletin

Number 1

Measurement Solutions Pressure & Level • Temperature • Force • Needle & Manifold Valves Diaphragm S

Diaphragm Seals Thermal Error Calculations Types 10, 25, 25H, 30

Three major factors contribute to thermal error:

- 1) Type of fill fluid used
- 2) Fill fluid volume
- 3) Diaphragm flexibility

The choice of fill fluid in Table I contributes directly to thermal errors in proportion to the coefficient of thermal expansion of the fluid. The resulting internal pressures produce adverse forces on the diaphragm which in turn are reflected in the pressure instrument.

The fill volumes in Table II & Table III contribute significantly to thermal errors. The greater the fill volume the greater volumetric expansion. Whenever possible, fill volumes should be minimized. If fill volumes cannot be adjusted, choose a fluid with the lowest coefficient of thermal expansion. The flexibility of the diaphragm is expressed as a spring rate (Table II). The smaller the diaphragm, the greater the spring rate. Any force used to move the diaphragm is considered an error because it subtracts from a direct reading of the pressure. Not only does it take more force to push a smaller diaphragm (spring bias), but high spring rates also reflect greater thermal errors when internal pressures push on it. It is desirable to have the lowest spring rate possible.

The thermal error (Err) can be expressed by the equations below. The first error formula (1) assumes a uniform gradual heating of the entire filled system. The second error formula (2) is used when the diaphragm, capillary and pressure instrument are at different temperatures and a thermal gradient exists.

Equation 1

 $Err = (T)(E_t)(R_s)(V_T)$ expressed in inches H₂0

Where:

Т The number of degrees of the temperature change (°F). =

The coefficient of thermal expansion of the fill liquid (the E_t = volumetric change constant of the fill liquid per ^oF).

The spring rate of the process diaphragm (inches H₂0 $R_s =$ pressure change/inch³ of fill liquid volume change).

V_T = The total volume of the fill fluid in the diaphragm seal system (inches³).

In order to analyze the significance of these temperature induced errors, it is helpful to express the error as a % of measured span. This can easily be done by the following equation:

Error % =
$$\frac{\text{Err}}{\text{Measured Span (in inches H}_20)} \times 100$$

	Recommended Temperature Range					
Fill Fluid	Viscocity (cSt)	Vacuum/ Compound	Pressure	E _t (1/°F)		
Glycerin (99.7%)	1,110	N/A	60 °F to 462 °F	0.000294		
Silicone 200	5	-130 °F to 176 °F	-130 °F to 356 °F	0.000588		
Silicone 200	50	-4 °F to 250 °F	-4 °F to 392 °F	0.000582		
Silicone 200, Food Grade	350	N/A	0 °F to 572 °F	0.000533		
Silicone 510	50	-60 °F to 250 °F	-60 °F to 400 °F	0.000533		
Silicone 550	125	-40 °F to 325 °F	-40 °F to 450 °F	0.000520		
Silicone 710	500	0 °F to 348 °F	0 °F to 500 °F	0.000430		
Halocarbon 4.2 Oil	4	-40 °F to 176 °F	-40 °F to 347 °F	0.000565		
Syltherm 800	9	4 °F to 392 °F	-40 °F to 750 °F	0.000962		
Mineral Oil	57	-4 °F to 338 °F	-4 °F to 482 °F	0.000356		
Neobee M-20	10	-10 °F to 200 °F	-10 °F to 400 °F	0.000511		

Table II. Diaphragm Spring Rates and Volumes

Table I. Fill Fluid Expansion Factors

Diaphragm Diameter Inches	Applicable Type	R _s	Vs
1.00	25	10.000	0.19
1.20	25H	10,000	0.12
2.10	29	2,600	0.85
2.40	30	800	0.18
3.00	10	240	0.48

Table III Accessory Internal Volume

Tuble III. / loocoool y Internal volatile					
Component	Volume				
Capillary (1)	0.053"/ft3				
2" Nipple	0.024"/ft ³				
2" Nipple	0.048"/ft3				
(1) Volume is based o	on canillary 1/8" (3 17 m	m)			

O.D. x 0.025" (0.635 mm) wall

Equation 2

Err =
$$[(T_s \times V_s) + (T_p \times V_p \times L) + (T_p \times V_p)] [E_t] [R_s]$$

expressed in inches H₂0

Where:

V_T = $V_{s} + V_{p}L + V_{D}$

- V_T = Total volume of filled system (inches³)
- = Volume of seal (inches³)
- Volume of capillary (inches³/foot of length) =
- $V_p = V_D =$ Volume of inst. device (inches³)
- L = Length of capillary (feet)
- T_s Change in temperature of liquid in seal (°F) =
- = Change in temperature of liquid in capillary (°F)
- $T_p = T_D =$ Change in temperature of liquid in inst. device (°F)